
889A/889B – Remote Control Interface

The 889A and 889B benchtop LCR meters both use the same set of commands for remote
communication over RS2332 (889A) or USB virtual COM (889B). This article will provide details on the
different modes and settings available for remote communication, as well as details on how to decode
some of the commands.

RS232/Virtual COM settings
For 889B, please install the USB drivers first prior to connecting the instrument to the PC via USB. The
USB is a virtual COM port, thus behaving like a serial RS232 port. Windows will automatically assign a
COM port, which can be verified from “Device Manager”. The driver is named as CP210x.

Here are the serial port settings to use:

Baudrate: 9600
Parity: None
Data bits: 8
Stop bit: 1

Remote Interface Modes
There are 4 different remote modes available on these LCR meters.

NORMAL – This is the default mode of the LCR meter. When in this mode, the meter operates in LOCAL
mode and front panel keys are accessible to setup and control the instrument.

BINNING – This mode is reserved for future use. Currently, it is set to operate in the same fashion as
NORMAL mode.

REMOTE BINNING – In this mode, results of the measurement on the display are continuously sent to
the USB port. This includes the measured readings, as well as all the settings that are shown on display.

REMOTE – In this mode, data will not be automatically sent to via USB continuously. Instead, users can
send SCPI like commands to query, write, or read data from the LCR meter. This is the only mode where
the SCPI like commands are available for use.

Remote Binning
In remote binning mode, strings of hexadecimals are continuously sent via USB to provide fast, updated
measurements to the PC for interpretation and analysis. There’s a standard format in which the LCR
meter will follow by for every strings of data it sends. It follows the below structure:

Measurement Data
(7 bytes or 11 bytes)

Setup/Parameter Data
(6 bytes)

Measurement Data
There are two data formats for the measurement data string of hex. 7 bytes, and 11 bytes. 7 bytes are
used when there’s only one measurement made and shown on display. For example DCR function
would have this format. 11 bytes are used when there are two measurements made and shown on both
primary and secondary display. For example, Cp and D would have this format since two different
measurements are made simultaneously. It can also be used when only secondary display readings are
made, such as DCV function.

7 bytes Format
With the 7 bytes format scheme, the string of hex can be divided like the following:

02 03 M-B0 M-B1 M-B2 M-B3 CS

02 and 03: These are the leading codes that mark the beginning of the string of the 7 bytes format.
These do not change.

M-B0 to M-3: These represent the actual measured data on the primary display of the LCR meter.
It’s represented in a total of four bytes, and it requires conversion to 32-bit floating point format. The
values are in little endian format.

Example from DCR measurement:

M-B0 M-B1 M-B2 M-B3
9B 37 97 4B

1. Since it is in little endian format, change and reverse the order of the bytes.
4B 97 37 9B

2. Convert the above string to 32-bit floating point format. This conversion may be tedious, but
most software development languages already contain functions, libraries, or methods that can
do a direct conversion between hex to 32-bit floating point or binary to 32-bit floating point.
There are also many online websites that can compute the conversion for you simply by
entering hexadecimals.

In this example, 4B 97 37 9B converts to 19820342.

The measured DCR value on display is 19.82 Mohm. In this case, the converted value gives you
the complete reading in ohms, with an addition of 4 extra digits of resolution.

CS: This is the checksum byte that is used to indicate the end of the string of data. According to the
manual, it is indicated as: -((02+03+data_code) && 0x00FF). This is calculated in the following way:

Step 1: Add the first 6 bytes together.

Step 2: Convert the results into binary, and then do a logical AND operation with 0x00FF.

Step 3: Take the result and take the two’s complement.

Step 4: Convert this back to hex to obtain the CS byte.

Example:

02 03 9B 37 97 4B 47

Step 1: Add first 6 bytes:

02 + 03 + 9B + 37 + 97 + 4B = 1B9

Step 2: Convert to binary:

1BA => 1 1011 1001

Logical AND operation with 0x00FF (= 0000 0000 1111 1111 in binary)

Converted binary 0000 0001 1011 1001
0x00FF(in binary) 0000 0000 1111 1111

Logical AND 0000 0000 1011 1001
Note: Since the first byte of 0x00FF will always be zero, logical AND operation of this byte will also
always be zero. Thus, it can be ignored.

Result : 1011 1001

Step 3: Take the two’s complement of Result

1011 1001 => 0100 0110 + 1 = 0100 0111

Step 4: Convert back to hex to obtain CS byte

0100 0111 = 47 (in hex)

11bytes Format
There are two types of 11 bytes format that are used with these LCR meters. One type is available when
there are two measurement data (i.e. Cp and D) that can be obtained from display. Another type is
when only secondary display reading is available (i.e. DCV, ACV, DCA, ACA)

Dual Measurement Data type

With the 11 bytes format scheme, the string of hex can be divided like the following:

02 09 M-B0 M-B1 M-B2 M-B3 S-B0 S-B1 S-B2 S-B3 CS

02 and 09: These are the leading codes that mark the beginning of the string of the 11 bytes format.
These do not change.

M-B0 to M-3: These represent the actual measured data on the primary display of the LCR meter.
It’s represented in a total of four bytes, and it requires conversion to 32-bit floating point format. The
values are in little endian format.

S-B0 to S-B3: These represent the actual measured data on the secondary display of the LCR meter.
It’s represented in a total of four bytes, and it requires conversion to 32-bit floating point format. The
values are in little endian format.

Example from Cp measurement on primary display:

M-B0 M-B1 M-B2 M-B3
D1 30 91 3F

1. Since it is in little endian format, change and reverse the order of the bytes.
3F 91 30 D1

2. Convert the above string to 32-bit floating point format. This conversion may be tedious, but
most software development languages already contain functions, libraries, or methods that can
do a direct conversion between hex to 32-bit floating point or binary to 32-bit floating point.
There are also many online websites that can compute the conversion for you simply by
entering hexadecimals.

In this example, 3F 91 30 D1 converts to 1.1343023.

The measured Cp value on display is 1.134.

Example from D measurement on secondary display:

S-B0 S-B1 S-B2 S-B3
3C A7 90 3D

1. Since it is in little endian format, change and reverse the order of the bytes.
3D 90 A7 3C

2. Convert the above string to 32-bit floating point format. This conversion may be tedious, but
most software development languages already contain functions, libraries, or methods that can
do a direct conversion between hex to 32-bit floating point or binary to 32-bit floating point.
There are also many online websites that can compute the conversion for you simply by
entering hexadecimals.

In this example, 3D 90 A7 3C converts to 7.0631474e-2 or 0.070631474.

The measured D value on the secondary display is .0706.

CS: This is the checksum byte that is used to indicate the end of the string of data. According to the
manual, it is indicated as: -((02+09+data_code) && 0x00FF). This is calculated in the following way:

Step 1: Add the first 10 bytes together.

Step 2: Convert the results into binary, and then do a logical AND operation with 0x00FF.

Step 3: Take the result and take the two’s complement.

Step 4: Convert this back to hex to obtain the CS byte.

Example:

02 09 D1 30 91 3F 3C A7 90 3D 74

Step 1: Add first 10 bytes:

02 + 09 + D1 + 30 + 91 + 3F + 3C + A7 + 90 + 3D = 38C

Step 2: Convert to binary:

38C => 11 1000 1100

Logical AND operation with 0x00FF (= 0000 0000 1111 1111 in binary)

Converted binary 0000 0011 1000 1100
0x00FF(in binary) 0000 0000 1111 1111

Logical AND 0000 0000 1000 1100
Note: Since the first byte of 0x00FF will always be zero, logical AND operation of this byte will also
always be zero. Thus, it can be ignored.

Result : 1000 1100

Step 3: Take the two’s complement of Result

1000 1100 => 0111 0011 + 1 = 0111 0100

Step 4: Convert back to hex to obtain CS byte

0111 0100 = 74 (in hex)

 Secondary Display Reading type

With the 11 bytes format scheme, the string of hex can be divided like the following:

02 09 S-B0 S-B1 S-B2 S-B3 S-B0 S-B1 S-B2 S-B3 CS

02 and 09: These are the leading codes that mark the beginning of the string of the 11 bytes format.
These do not change.

S-B0 to S-B3: There are two sets of these bytes that are exactly identical. One set can be treated as
redundant data. These represent the actual measured data on the secondary display of the LCR meter
when this display is the only display used for measurement (i.e. DCV function). It’s represented in a
total of four bytes, and it requires conversion to 32-bit floating point format. The values are in little
endian format. We will only look at one set of 4 bytes here since the other set is the same and is
redundant.

Example from DCV measurement on secondary display:

S-B0 S-B1 S-B2 S-B3
52 49 1D 3B

1. Since it is in little endian format, change and reverse the order of the bytes.
3B 1D 49 52

2. Convert the above string to 32-bit floating point format. This conversion may be tedious, but
most software development languages already contain functions, libraries, or methods that can
do a direct conversion between hex to 32-bit floating point or binary to 32-bit floating point.
There are also many online websites that can compute the conversion for you simply by
entering hexadecimals.

In this example, 3B 1D 49 52 converts to 2.4000001e-3.

The measured DCV value on the secondary display is 2.400 mV.

CS: This is the checksum byte that is used to indicate the end of the string of data. According to the
manual, it is indicated as: -((02+09+data_code) && 0x00FF). This is calculated in the following way:

Step 1: Add the first 10 bytes together.

Step 2: Convert the results into binary, and then do a logical AND operation with 0x00FF.

Step 3: Take the result and take the two’s complement.

Step 4: Convert this back to hex to obtain the CS byte.

The calculation is the same as that calculated for Dual Measurement Data Type above.

Note: The checksum still accounts for the first 10 bytes in the string even though the measurement data
is repeated twice.

Setup/Parameter Data
After the string of 7bytes or 11 bytes are sent, the next string of bytes includes the settings and status of
the instrument. It is in a frame of 6 bytes.

With the 6 bytes format scheme, the string of hex is divided like the following:

02 04 B0 B1 B2 CS

02 and 04: These are the leading codes that mark the beginning of the string of the 6 bytes format.
These do not change.

B0 – B2: These represent the settings and status of the instrument. They are in little endian format,
and conversion to binary is necessary to determine the settings and status of the instrument.

Example:

B0 B1 B2
 D2 E2 85

1. Since it is in little endian format, first reverse the order:
 85 E2 D2

2. Convert to binary:
85 E2 D2 = 1000 0101 1110 0010 1101 0010

3. There are total of 24 bits from the binary conversion.

Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0

Each bit or set of bits indicate a setting or status of the instrument. They are defined by the chart below:

Bit Position LCR DC/AC V/A
Bit 2 – 0 Test Frequency Reserved

000 100 Hz
001 120 Hz
010 1 kHz
011 10 kHz
100 100 kHz
101 200 kHz
110 Reserved
111 Reserved

Bit 4 – Bit 3 Test Level Reserved
00 50 mVrms
01 250 mVrms

10 1 Vrms
11 Reserved

Bit 5 Reserved
0 Default Default
1 Reserved Reserved

Bit 6
0 Relative Relative
1 Normal Normal

Bit 7
0 Calibration Calibration
1 Normal Normal

Bit 10 – 8 Primary Function Reserved
000 Lp
001 Ls
010 Cp
011 Cs
100 Z
101 DCR
110 Reserved
111 Reserved

Bit 12 – 11 Secondary Function Reserved
00 D
01 Q
10 DEG(phase)
11 ESR

Bit 16 – 13 Range Hold & unit
0000 RH nH Reserved
0001 RH uH RH mV, mA
0010 RH mH RH V, A
0011 RH H Reserved
0100 RH pF
0101 RH nF
0110 RH uF
0111 RH mF
1000 RH F
1001 RH Ohm
1010 RH kOhm
1011 RH MOhm
1100 Reserved
1101 Reserved
1110 Reserved
1111 Auto-ranging Auto-ranging
Bit 17

0 Short Cal Short Cal
1 Open Cal Open Cal

Bit 21 – 18 Measurement Modes

0000 Reserved
0001 LCR
0010 DCV
0011 ACV
0100 Diode
0101 Continuity
0110 DCA
0111 ACA

Others Reserved
Bit 23 – 22 Remote mode

00 Normal
01 Binning
10 Remote Binning
11 Reserved

4. Taking our example, it translates to the following:

Bit # 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0

Instrument settings and status:

Bits Binary code Representation
Bit 2 – 0 010 1 kHz
Bit 4 – 3 10 1 Vrms
Bit 5 0 Default
Bit 6 1 Normal
Bit 7 1 Normal
Bit 10 – 8 010 Cp
Bit 12 – 11 00 D
Bit 16 – 13 1111 Auto ranging
Bit 17 0 Short Cal
Bit 21 – 18 0001 LCR
Bit 23 – 22 10 Remote Binning

CS: This is the checksum byte that is used to indicate the end of the string of data. It is indicated as:
-((02+04+data_code) && 0x00FF). This is calculated in the following way:

Step 1: Add the first 5 bytes together.

Step 2: Convert the results into binary, and then do a logical AND operation with 0x00FF.

Step 3: Take the result and take the two’s complement.

Step 4: Convert this back to hex to obtain the CS byte.

The calculation is similar to the checksum calculations for 7 bytes and 11 bytes format. In this example,
we take into consideration:

02 04 D2 E2 85 C1

Following the same steps, the checksum can be calculated as: C1

Example
Here’s an example of what you might see through the USB sent from the instrument when in remote
binning mode:

02 09 FA 10 91 3F CA 90 92 3D F2 02 04 D2 C2 04 62 02 09 09 11 91 3F 06 8E 92 3D A8 02 04 D2 C2 04 62
02 09 08 11 91 3F 4B 8F 92 3D 63 02 04 D2 C2 04 62………..

Green – These are the measurement readings. In this case, it is in the 11 bytes format.

Yellow – These are the instrument settings and status. It has the 6 bytes format.

Note: All the yellow highlighted bytes are the same because settings are always the same unless you
change them. In this case, nothing has changed and therefore the bytes do not change.

Following the instructions from the above sections, we can obtain the following from this example:

02 04 D2 C2 04 62 – Meter is in: Cp primary mode, D secondary mode, 1 kHz frequency, 1 Vrms test level,
RH on, short CAL, and readings for primary display is in uF (microfarads).

02 09 FA 10 91 3F CA 90 92 3D F2 – Measurement: Cp = 1.1333306 uF, D = 0.071565226

02 09 09 11 91 3F 06 8E 92 3D A8 – Measurement: Cp = 1.1333324 uF, D = 0.071559951

02 09 08 11 91 3F 4B 8F 92 3D 63 – Measurement: Cp = 1.1333323 uF, D = 0.071562372

Remote
In remote mode, the instrument will not continuously send measurement data and instrument
status/settings. Instead, users can use the remote protocols that can be found in the user manual to
send SCPI like commands for querying, writing, and reading between the instrument and PC. Refer to
the user manual for complete set of supported protocols.

	889A/889B – Remote Control Interface
	RS232/Virtual COM settings
	Remote Interface Modes
	Remote Binning
	Measurement Data
	7 bytes Format
	11bytes Format

	Setup/Parameter Data
	Example

	Remote

